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Abstract. Resonant tunnelling in two dimensions via a point impurity in a weak magnetic field
is considered. We show that when the scattered electrons’ energy is equal to the resonance one
(which is the eigenenergy of the impurity), the shift of the tunnelling angle is half of the shift when
the system is out of resonance. In particular, the incoming and outgoing angles depend on the
impurity’s location, and thus allow for its spectroscopy.

Experimental evidence of resonant tunnelling (RT) in optical systems has been known for
hundreds of years (not by this name of course) [1]. That is, it was well known that the
transmissivity of some medium could be greatly enhanced for a specific wavelength (or colour).

Soon after the birth of quantum mechanics, this concept of RT was adopted from the
optical world to the quantum one. However, compared to optical systems, RT in the quantum
systems is much more difficult to detect, because of the small wavelengths of the electrons. It
was only in the last two decades, due to the improvements in nanostructure technology, that it
became possible to fabricate a quantum system that can demonstrate an RT behaviour. Most of
the experiments at the beginning were of one-dimensional (1D) nature [2]. Actually, in most
of these experiments the two other dimensions were degenerated, e.g., two potential barriers
separated by a potential well of layered semiconductors. RT in 1D was well investigated [3],
and was found to be in good agreement with these experiments.

Besides these, there were other experiments (the first two articles of [4]) where their
symmetry demands considerations of more than one dimension, e.g., where the potential well is
not one dimensional but a potential defect in higher dimensions. There were some approximate
models for RT through a point defect [5], which these experiments tried to confirm. The study
of RT in higher dimensions goes on (the last two articles of [4]), but the angular dependence
of the incident electrons in an RT process in 2D via an impurity received little attention.

The remarkable characteristics of the quantum Hall effect (QHE), that were demonstrated
in 1980 [6], raise the interest in the combination of semiconductor heterostructures and a
strong perpendicular magnetic field [7]. As a result, a few years later the influence of a strong
magnetic field on a RT process was investigated [8]. Even though most of these experimental
and theoretical works were of 1D nature, i.e., the RT through a 1D barrier was measured, the
angular dependence of the RT electrons could not be ignored.

Marigliano Ramagliaet al showed [8] that when electrons are scattered from a potential
barrier of 1D nature (without an impurity inside) in a strong perpendicular and localized
magnetic field the tunnelling depends strongly on the angle of incidence of the incoming
particles.
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In this paper we consider a model for RT in 2D via a point impurity in a weak magnetic field.
It shows that the scattering amplitude, and thus the transmissivity of the barrier, exponentially
increases when the electrons’ energy equals the resonance energy of the impurity (otherwise,
it is exponentially small). The amplitude also depends very strongly on the position of the
impurity. It obtains its maximal value for a specific incoming and outgoing angles, and any
deviation from these values will decrease it exponentially.

As a start, we choose a very simple model: a 2D electron gas scattered over an opaque
stationary barrier (heightV , width 2L in thex-direction and infinitely long in they-direction)
in a weak perpendicular magnetic field (B = −Bẑ).

Since we are interested in the scattering angle in a process of tunnelling through a magnetic
field, we will confine the magnetic field to the area of the barrier. It should be emphasized
here, that the existence of a confined magnetic field does not contradict any physical law. In
fact, Maxwell equations allow for such a confinement so long as there is a current density at
the boundaries (as in the case of a solenoid), which can be neglected in two dimensions. Many
works (see the first two articles of [8]) and effects (see, for example, the Aharonov–Bohm
effect [13]) used this fact, that a magnetic field can, in principle, be confined in space.

We can then write the stationary-state Schrödinger equation as

[(p̂y +Ay)
2 + p̂2

x ]ψ(r)− (E − U(x))ψ(r) = 0. (1)

Hereinafter, we use the units ¯h = 2m = −e = c = 1 (Planck constant, the electron’s mass
and charge, and the velocity of light respectively).p̂x,y are the momentum operators,E is the
electrons’ energy,U is the potential:

U(x) ≡
{
V for −L < x < L

0 otherwise.

In the following, the Landau gauge is chosen:

Ay ≡


−BL x < −L
Bx −L < x < L

BL x < L.

The eigenfunction of (1) has the form

ψ(r) = η(x) exp(iκy).

Outside the barrier, the solution is trivial: if the incoming plane wave has a momentum
k(k ≡ √E[cosχ x̂ + sinχŷ]), i.e., with an incoming angleχ , in our gauge the wave function
is

ψinc(r) = exp(i[k · r − BLy]).

We are interested in small angles, thus,

ψinc(r) = exp(i[kx + kχy − BLy]) (2)

wherek ≡ √E. Similarly, the scattered function looks like

ψsc(r) = T exp(i[kx + kθy +BLy])

whereT is the transmission coefficient, andθ is the outgoing angle.
However, inside the barrier, we can rewrite equation (1):

∂2η

∂ξ2
+

(
ε′ − ξ

2

4

)
η = 0

whereε′ ≡ (E − U)/2B, ξ ≡ √2B(x − x0) andx0 ≡ κ/B.
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The solutions of this equation are, of course, the parabolic cylinder functionsDv(±ξ) (here
we have exploited the fact that the magnetic field is very weak, i.e.,BL2 � 1. This allows
us, along with the extreme opaqueness of the barrier (UL2 � 1) to use the approximation
Dv(±ξ) ≈ exp(∓βξ ∓ ξ3/24β) (whereβ ≡ √|ε′| = √(U − E)/2B).

By matching the solutions and their derivatives at the boundary of the barrier, one finds
that the scattered functionψsc(r) (for x →∞) has the following form

ψsc(r) = T exp{i[kx + k(χ − 2BL/k)y +BLy]} (2a)

where the transmission coefficient is

T ≈ exp

{
− 2Lp

[
1 +

[
kχ − BL

p

]2]}
(2b)

wherep ≡ √U − E (notice the difference betweenp andk ≡ √E).
Expression (2a) suggests that the scattered angle is shifted by

χ − θ = 2BL/k

and expression (2b) suggests that maximal transmissivity through the barrier is achieved for

χ = BL/k. (2c)

But (2b) also implies that the transmissivity is always (for all incoming angles) exponentially
small.

In the next step we add an impurity (or a defect) to the barrier. The stationary-state
Schr̈odinger equation can then be written as

[(p̂y +Ay)
2 + p̂2

x ]ψ(r)− (E − U(x))ψ(r) = D(r − ax̂)ψ(r) (3)

whereD(r) is the impurity’s potential anda is the distance from the impurity to the centre of
the barrier (see figure 1(b)).

Equations like equation (3) are complicated, and there is no general method to solve them.
One cannot use perturbation theory, because the problem includes tunnelling. The WKB
approximation is also inapplicable since it can be used only when the electron’s wavelength
is larger then the problem’s length parameters. The last requirement certainly does not hold
because of the pointlike nature of the defect.

Within the following lines, we show that by using an impurity D function (IDF, see [9])
as the defect potential, the solution to equation (3) will merely be the Green function of the
same equation but without the defect.

Even though the IDF represents a point impurity, the implications of the solution are more
general, since it can be generalized to a short-range scatterer [12].

Since the symmetry of the barrier is Cartesian, it is convenient to use the extreme anisotropy
case of a point potentialD(r) = Wδ(x)v(y/ρ) (whereρ is the impurity size in they-direction,
δ is the Dirac delta function,W is a function ofρ only andv(z) is a function that decays at
z ∼ 1). By taking the limitρ → 0, one can choose the following IDF as the potential defect
(see also [9]):

D(r) ≡ lim
ρ→0

2π1/2

ρ ln(ρ0/ρ)
δ(x) exp[−(y/ρ)2].

The delta function can, of course, be written as

δ(x) = lim
ρ→0

exp[−(x/ρ)2]/ρπ1/2.

Thus, the size of the defect isρ in both dimensions, which means that its zero point energy
is≈1/ρ2. Since|D| � 1/ρ2, whenρ → 0, the potential defect is like an infinitely shallow
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(a)

(b)

Figure 1. (a) The direction of the incoming electrons is shifted when scattered over the barrier in
the presence of a weak magnetic field. But the transmissivity is exponentially small. (b) When the
energy of the incoming electrons is equal to the resonance one, the transmissivity exponentially
increases, and attains its maximal value forχ = χm ≡ (L+a)B/2k andθ = θm ≡ −(L−a)B/2k.

well. For such a well, there is a bound eigenstate with the finite Bohr radiusρB ≈ 0.75ρ0,
and an eigenenergyE0 ∼ −1/ρ2

B [9, 10]. Since its eigenfunction exponentially decays atρB ,
whileD decays atρ (i.e., the potential decays infinitely faster than its eigenfunction), in the
region of the defect the wave function can be considered as a constant, as if it were a delta
function [10] (this is also valid for extended states).

Then, equation (3) can be rewritten

[(p̂y +Ay)
2 + p̂2

x ]ψ(r)− (E − U(x))ψ(r) = D(r − ax̂)ψ(ax̂). (4)
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The solution for such an equation comes directly from its Green function. Then, the scattered
eigenfunctionψ+

sc(r) is [11]

ψ+
sc(r) = ψsc(r)−

G+(r, r0)ψsc(r0)

1 +
∫

dr′G+(r0, r′)D(r′ − r0)

∫
dr′′D(r′′ − r0) (5)

wherer0 ≡ ax̂ is the impurity’s position,ψsc is the incoming plane wave (or any other solution
of the homogenous equation) andG+(r, r′) is the ‘outgoing Green function’ of equation (4).
Although (5) is the exact solution of the problem, it is rather complicated, because of the
problematic symmetry of the problem. However, in the case of a very opaque barrier (high
and wide) and a weak magnetic field, for which

B−1/2� L� E−1/2 > V −1/2

the leading approximation yields an explicit analytical expression.
The calculations of the Green function are very tedious; thus we will not present them

here except for the main points.
It is inconvenient to calculate the Green function from the eigenfunctions. Instead, we

prefer to use the helpful relation

G+(r, r0) = 1

2π

∫ ∞
−∞

dk G+
1(x, x0;E − k2) eiky . (5a)

In this equationG+
1(x, x0;E) is the ‘outgoing Green function’ of the one-dimensional equation:

[p̂2
x + (k +Ay)

2]ψ(x)− (E − U)ψ(x) = 0. (5b)

G+
1 can easily be calculated, since the solutions of equation (5b) are known exactly (with the

Dv as in equation (1)). Thus, by using the weak field approximation, which was used in (2b),
G+ can be calculated from (5a).

If we rewrite equation (5) as

ψ+
sc(r) = ψsc(r) +

f

r1/2
exp(ikr + iBLy)

for r ≡ |r| → ∞, then the scattering amplitude(f ) has the form:

f (χ, θ, E) = C exp

[
− 2pL− L + a

2p

(
kχ − L + a

2
B

)2

− L− a
2p

(
kθ +

L− a
2

B

)2 ]
×[ln(p2/E0) + 2i1]−1 (6)

whereχ is the incident angle, i.e.,k ≡ (x̂ cosχ + ŷ sinχ), θ is the scattered angle, i.e.,r ≡
r(x̂ cosθ +ŷ sinθ),C ≈ 1 is a complex function that depends slowly on the anglesθ ,χ and on
the energyE. The resonance width is exponentially small1 ≈ L−1/2U−1/4 exp[−2p(L−|a|)],
and as was notedp2 ≡ V − E.

From equation (6) one can learn the following:

(A) A resonance occurs forE ≈ Er ≡ V −E0. In that case, the real part of the denominator
vanishes, and the amplitude exponentially increases by the factor1−1.

(B) The width of the resonance is exponentially small, i.e., 2E01. The dependence of the
resonance energy and its width on the magnetic field is negligible.

(C) The incoming and outgoing angles, for which the amplitude is maximal, depend on the
magnetic field and on the impurity’s position in the barrier:f attains its maximal value
for an incoming angleχm ≡ (L+a)B/2k, and for an outgoing oneθm ≡ −(L− a)B/2k.
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In the following we present a classical interpretation of this effect.
The favourite orbit (the one with the maximal amplitude) is constructed from two arcs:

The first arc begins at the left side of the barrier and ends at the impurity’s location. Its centre
of orbit is at−(L − a)/2. The second arc begins at the impurity’s location and ends at the
right side of the barrier, with a centre of orbit at(L + a)/2 (see figures 1(b)).

The difference between these angles, i.e.,

χm − θm = LB/k
is half of the difference between the incoming and outgoing angles when the impurity is missing
(equations (2c), see figure 1(a)). This may sounds strange, because this difference does not
depend on the impurity’s location. It is valid even when the impurity is very close to the edges
of the barrier, while in that case one might expect to regain the previous result (where the
impurity is absent).

This effect is a quantum mechanical one (since it is a resonant tunnelling effect);
however, since the magnetic field is very weak, the electron’s orbit may have a quasi-classical
interpretation:

Inside the barrier, the particle ‘prefers’ to minimize its path (with the constraint of moving
on a circle with a radiusk/B). Thus, when the impurity is absent, the minimized path is
a symmetrical arc (see figure 1(a)), and then the incoming and outgoing angles areBL/k

and−BL/k respectively. When the impurity is present, and the system is at resonance, the
particles must pass through the impurity. The rest of the path is again two symmetrical arcs (see
figure 1(b)), and thus the incoming and outgoing angles are(L + a)B/2k and−(L− a)B/2k
respectively.

Let us evaluate these angles. Our derivation is correct for
√
U − Er � L−2� B. Then,

in an ordinary experiment the valuesL ≈ 0.1µm andB ≈ 1013 m−2 (B ≈ 10−3 T) will lead

Figure 2. A qualitative experiment with an STM to measure the scattered angle of the electrons,
which tunnel through a 2D point impurity in a weak magnetic field.



Resonant angular dependence in weak magnetic field 4037

to χ , θ ≈ 10−4E
−1/2
eV (EeV is the electrons’ energy in electron Volts). Thus, if the current

is measured 1µm from the impurity (in figure 2 it is≈0.5 µm), the orbit deviation in the
y-direction is≈1 ÅE−1/2

eV . One can place the detector in a potential energyU = V2, for which
EeV = Er − V2 ≈ 0.01 eV, and then the orbit’s deviation will be≈10 Å. This value can
be measured with a scanning tunnelling microscope (STM). A qualitative experiment with an
STM is shown in figure 2. The barrier is represented as a doped semiconductor (say AlGaAs
or SiO2), which allows at the Fermi level for evanescent modes. The undoped semiconductors
(say GaAs or Si) on its two sides allow for electron propagation. The matching between the
electron’s Fermi energy and the impurity’s resonance energy can be obtained in numerous
ways, one of which is that the imperfection (the impurity) dimensions can be engineered to
meet the electron’s Fermi wavelength, while small energy modifications can be adjusted by
the voltage source (of course, that will distort the barrier but will have a negligible effect on
the electron’s orbit). Another option is to create a multiple-imperfection barrier, in which
case only the resonant impurities (the ones where their resonance energy corresponds with the
Fermi one) will contribute to the effect.

The orbit’s deviation can, of course, be used to detect the location of the impurity: When
the current through the STM’s tip is maximal, while it is moving only in they-direction, and
the magnetic field is absent, they-coordinate of the impurity is determined. Then the magnetic
field is turned on. The new position of the tip, for which the current is maximal, determines
the shift of the scattered angle.

To summarize, we consider a model for RT in 2D via a point impurity in a weak magnetic
field. This model shows that when the electrons’ energy is equal to the resonance one, the
transmissivity of the barrier exponentially increases. The transmissivity depends exponentially
on both the incoming and outgoing angles, and attains its maximal values for specific ones.
Since these angles depend on the impurity’s location, this effect can be used to map impurities
in a potential barrier. It also emphasizes that the impurity pins the electron and deviates its
orbit. A qualitative experiment is also suggested.
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